Evapotranspiration Estimation Using Soil Water Balance, Weather and Crop Data

نویسندگان

  • Ketema Tilahun Zeleke
  • Leonard John Wade
چکیده

The rise in water demand for agriculture, industry, domestic, and environmental needs requires sagacious use of this limited resource. Since agriculture (mainly irrigation) is the major user of water, improving agricultural water management is essential. Efficient agricultural water management requires reliable estimation of crop water requirement (evapotranspiration). Evapotranspiration (ET) is the transfer of water from the soil surface (evaporation) and plants (transpiration) to the atmosphere. ET is a critical component of water balance at plot, field, farm, catchment, basin or global level. From an agricultural point of view, ET determines the amount of water to be applied through artificial means (irrigation). Reliable estimation of ET is important in that it determines the size of canals, pumps, and dams. The use of the terms ‘reference evapotranspiration’, ‘potential evapotranspiration’, ‘crop evapotranspiration’, ‘actual evapotranspiration’ in this chapter is based on FAO-56 (FAO Irrigation and Drainage publication No 56) (Allen et al., 1998). There are different methods of determining evapotranspiration: direct measurement, indirect methods from weather data and soil water balance. These methods can be generally classified as empirical methods (eg. Thornthwaite, 1948; Blaney and Criddle, 1950) and physical based methods (eg. Penman, 1948; Montheith, 1981 and FAO Penman Montheith (Allen et al., (1998)). They vary in terms of data requirement and accuracy. At present, the FAO Penman Montheith approach is considered as a standard method for ET estimation in agriculture (Allen et al., 1998). A case study from a semiarid region of Australia will be used to demonstrate ET estimation for a canola (Brassica napus L.) crop using soil water balance and crop coefficient approaches. Daily rainfall data, soil moisture measurement data using neutron probe, and AquaCrop (Steduto et al., 2009) -estimated deep percolation below the crop root zone will be used to determine actual evapotranspiration of the crop using soil water balance. Reference evapotranspiration ETo will be determined using FAO ETo calculator (Raes, 2009). Crop canopy cover measured using a handheld GreenSeekerTM and expressed as normalized difference vegetation index (NDVI) will be used to interpret evolution of evapotranspiration during the growing season (life cycle) of the canola crop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of effective precipitation for winter wheat in different regions of Iran using an Extended Soil-Water Balance Model

Estimated Effective Precipitation (Pe) in dryland areas is an essential element of water resource management. Itrepresents the amount of precipitation available in the crop root zone to meet the needs of evapotranspiration. Thecurrent study compared different approaches for estimating Pe in different climatic zones of Iran. A two-layer soil–water balance (SWB) model was adopted based on the pro...

متن کامل

Landscape Evapotranspiration Estimation Using Remotely Sensed Data for Operational Applications in Agriculture and Hydrology

Evapotranspiration (ET) is an important component of the hydrologic budget because it expresses the exchange of mass and energy between the soil-water-vegetation system and the atmosphere. Prevailing weather conditions influence potential or reference ET through variables such as radiation, temperature, wind, and relativity humidity. In addition to these weather variables, actual ET (ETa) is al...

متن کامل

Irrigation Scheduling Using Remote Sensing Data Assimilation Approach

Remote sensing and crop growth models have enhanced our ability to understand soil water balance in irrigated agriculture. However, limited efforts have been made to adopt data assimilation methodologies in these linked models that use stochastic parameter estimation with genetic algorithm (GA) to improve irrigation scheduling. In this study, an innovative irrigation scheduling technique, based...

متن کامل

Relationship between topography, land use and soil moisture in loess hillslopes

The relationship between topography, land use, and topsoil moisture storage is investigated for a small catchment with undulating deep loess hilslopes in the south of the Netherlands. For a period of 10 months, soil moisture profiles have been measured weekly at 15 locations throughout the catchment. A Generalized Additive Model was employed to find relationships between the various factors inf...

متن کامل

Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China

As a major component of the water budget of a wetland, evaporation has proven difficult to measure evapotranspiration accurately. This paper developed a scheme to assess actual evapotranspiration (ETa) across a range of land uses in Nansi Lake Wetland, China, using a remote sensing technique and the Surface Energy Balance Algorithm for Land (SEBAL) model. The estimation of pixel-scaled ETa was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012